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Generalized Sasaki Projections and Riesz Ideals
in Pseudoeffect Algebras
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A noncommutative version of generalized Sasaki projections in pseudoeffect algebras
is introduced. It is proved that an ideal in a pseudoeffect algebra is Riesz if and only if

it is closed under the right and left Sasaki projections. In lattice ordered pseudoeffect
algebras, it is shown that generalized Sasaki projections are one-element sets, and their
explicit form is found. It is shown that if a supremum of a normal Riesz ideal in a lattice
ordered pseudoeffect algebra exists, it is a central element. These results extend those
obtained recently by Avallone and Vitolo for effect algebras.

KEY WORDS: pseudo-effect algebra; generalized Sasaki projection; Riesz ideal;
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1. INTRODUCTION

Effect algebras (alias difference posets) have been introduced for modelling
unsharp measurements in quantum mechanical systems (Foulis and Bennett, 1994).
They are a generlization of many structures which arose in quantum mechanics
(Beltrametti and Cassinelli, 1981 @ktand Pulmanna;1981; Varadarajan, 1985),
in particular of orthomodular lattices in noncommutative measure theory and MV-
algebras in fuzzy measure theory. After 1994, a great number of papers concerning
effect algebras have been published (see DeaneKij and Pulmannay 2000, for
basic properties and bibliography).

At the end of 90s, a noncommutative version of MV-algebras (Chang, 1958),
called pseudo-MV-algebras appeared (Georgescu and lorgulescu, 2000nBach
2002). A generalization of these, a noncommutative version of effect algebras, so-
called pseudoeffect algebras, have been introduced and studied incBuské™
and Vetterlein (2001a,b,c) and Dveeanskij (2003). Noncommutative algebraic
strcutures found applications in noncommutative logiajét; submitted) and a
programming language (Baudot, 2000).
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It has been proved in Dvuecenskij and Vetterlein (2001c) that the quotient
of an effect algebra with respect to a normal Riesz ideal is again a pseudoef-
fect algebra. In the present paper, we introduce a noncommutative version of
generalized Sasaki projections (Bennett and Foulis, 1998) in pseudoeffect alge-
bras and show their relations to Riesz ideals. The results extend those in Cheva-
lier and Pulmannaa(2000) and Avallone and Vitolo (2003) obtained for effect
algebras.

2. PSEUDOEFFECT ALGEBRAS

A partial algebra E; +, 0, 1), where+ is a partial binary operation and 0
and 1 are constants, is callecpseudoeffect algebraf, for all a, b, c € E, the
following properties hold:

(i) a+band @+ b) + c exist iff b+ c anda + (b + c) exist, and in this
caseq+b)+c=a+(b+c),
(ii) there is exactly onal € E and exactly one € E such thata + d =

e+a=1,
(iii) if a+ b exists, there are elemerdsein E suchthaa +b=d+a=
b+e,

(iv) if 1 4+ aora+ 1 exists, thera = 0.

Definea < b iff there exists an elememte E such thath + ¢ = b. Then<
is a partial ordering on E such that<Qa < 1 for all a € E. It can be shown
thata < biff b=a+ c=d+ a for somec, d € E. We will write c = a/b and
d = b\a. Then

(b\a)+a=a+ (a/b) = b,

in particular, we denotea = 1\a, 4 = a/1, so thata+a=1=a+ a for all
aeE.
Notice thatifa + bis defined, and; < a, b; < b,thena; + b, isalso defined
in E. In what follows, we often writ@ + b tacitly assuming thad + b is defined.
For basic properties of pseudoeffect algebras see Benskij and Vetterlein
(2001a,b). We note that # is commutative, thefe becomes an effect algebra.
For example, if G, u) is a po-group with a strong unit (not necessarily
abelian), and

'G,u):={geG:0<g=<u}

is the initial interval inG™, then (G, u); +, 0, u) is a pseudoeffect algebra if we
restrict the group addition to I'(G, u).

Let E, F be two pseudoeffect algebras. A mappmgE — F is said to be
a (homo)maorphisnif
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(i) h(0)=0andh(1)=1and
(i) h(a+ b) = h(a) + h(b) whenevesa + b is defined inE.

If his injective and surjective, arta™! is a homomorphism, theimis said to be
anisomorphismandE andF are calledsomorphic
A nonempty subselt of a pseudoeffect algebia s said to be aidealif

(i) x+y €| wheneverx, y € | andx + y is defined ing, and
(i) if x e I andy < x, theny € I.

Clearly,{0} andE are ideals irE. An ideal J is calledproperif J # E.
Let Abe anonempty subset &f a € E. ThenA+a: = {x +a x € Aand
X + ais defined inE} anda + A: = {a+ x: X € Aanda + X is defined inE}.
Anidealinl C E is callednormalif a+ | = | + a for all a € E. Clearly,
{0} andE are normal ideals. Moreover, ffis a homomorphism frork to F, then

ker(f): = {x e E: f(x) =0}

is a normal ideal oE.
An ideal | of E is said to be &Riesz idealcf. Chevalier and Pulmannay”
2000; Dvureénskij and Vetterlein, 2001c) if

xel,abeE,x<a+b = 3Fa,bjel,x<a +b,aa <ab; <h.

Let P be an ideal of a pseudoeffect algelraFora, b € E, we writea ~| b
iff there are elements, f € | such thata\e = b\ f. We recall thata ~, b iff
€/a = b\ f forsomee, f | iff €/a= f’/bfor somee, f’' € I.

Theorem 2.1. (DvureCenskij and Vetterlein, 2001c, Proposition 3.6).et P be
anormal Riesz ideal of a pseudoeffect algebra E. Thgiis an equivalence on E
such that (B P; +, [O]p, [1]p) is a pseudoeffect algebra, whdi@p = {b € E:
b~p a}, E/P ={[a]: a € E}, and[a]p + [b]p = [C]p iff there are g € [a]p,
b; € [b]p, and g € [c]p such that a + b; = c;.

3. GENERALIZED SASAKI PROJECTIONS

In analogy with Bennett and Foulis (1998), let us introduce the following

sets:
A(a,b):={de E:d<a,b=<d+ 4}, (1)
®|(a, b) := {minimal elements iV, (a, b)}; (2)
Vi(a,b)y:={de E:d <a,b<a+dj}, 3

P, (a, b) := {minimal elements iV, (a, b)}. 4)
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The setsb(a, b) (resp.®, (a, b)) will be called thdeft (resp. theight) gen-
eralized Sasaki projection of b on Blotice thata € V|(a, b) anda € V,(a, b),
but ®/(a,b) and &,(a,b) may be empty in general (Bennett and Foulis,
1998).

We will say that a subsel of E is closedunder left or right generalized
Sasaki projections if

jeld,aeE = d(a j)c I,
or
jeld,aeE = &(a j)cCJ

We will say thatJ is closed under generalized Sasaki projectidfris is closed
under left and right genealized Sassaki projections.

Lemma3.1. Leta b e E,ifse E is suchthafi\s and b+ s are defined, then

(i) Vi(a,b+s) c A(S +a, b), whered\s = (s’ +a)".
(i) d(a,b+3s)C (s +a,b).

Proof:

(i) Letd € Vi(a, b+ s), then by definitiond <aandb+s<d+&. The
latter inequality implied < (d + &)\s = d + (&\s). This impliesd <
a<s+aandb<d+ (s +a)7,thatis,d € V(s + a, b).

(i) Letd € ¢(a, b+ ). Itsufficesto showthatis minimalinV, (s’ + a, b).
Sochoose € E, e < d,ande € V(s + a, b). Frome < ditfollowsthat
e<a. Moreoverb<e+ (s +a)” =e+a\simpliesb+s<e+a.
Hencee € V(a, b + s), and minimality ofd implies thate = d. This
concludes the proof. O

Lemma3.2. Leta b e E,ifse E issuch that s+ b and §a are defined, then

() Vi(a,s+b)c Vi(a+¢,b),wherega=(a+5)".
(i) &(a,s+b)c d(a+9,b).

Proof:

() Letd € Vy(a, s+ b), then by definitiond < aands+b < a+d. The
latter inequality impliesb <s/(a+d)=s/a+d=(a+5) +d,
henced € V;(a+ ¢, b).

(i) Let d € ®,(a, s+ b), we have to prove thal is minimal in V,(a +
s,b). Lete<d,ee V,(a+¢g,b). This impliese<d <a, andb <
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(a+9)" +e=(s/a)+ e, from the last inequality we ges+b <
a+ e. Hencee € ®;(a, s+ b), and minimality ofd yieldse = d. This
concludes the proof. O

Now we are able to prove the main result in this section.

Theorem 3.3. Let E be a pseudoeffect algebra such that for everly @ E,
d|(a, b) # ¥ andd,(a, b) # 0. Anideal | in E is a Riesz ideal if and only if | is
closed under generalized Sasaki projections.

Proof: First assume thalt is a Riesz idal. Let € | andm € ®(a, i), that is,
m < aandi <m+ a. Sincel is Riesz, there arg, i» in | suchthai <i;+i»
andi; <m, i < a. This impliesi; <a, i <i;+ a hencei; € Vi(a,i). From
i1 < m, and minimality ofmwe getm = i; € |. This proves that is closed under
left generalized Sasaki projections. Nowilet |, m e ®.(a,i). Thenm < a,i <

a -+ m. It follows that there aréy, i» € | suchthat; <a,i; <mandi <iy+is.
This entails, < m <aandi <a-+i,thatis,i; € V;(a,i). Sincem is minimal
andi, < mwe getm =i, € |. This proves thak is closed under right generalized
Sasaki projections.

To prove the converse, assume thas an ideal closed under generalized
Sasaki projections. Léte | andc, d € E be such that < ¢+ d. Puts :=d/g,
the equalityc+d+s=c+d+d/€ =1 implies thats is defined and + s
is defined. Choosé € ®(c,i + ). Thenh <c and by Lemma 3.1 (ii))h €
®(s'+c,i), where § +c)” =E\s =¢E\(d/T) =d. The last equality follows
from €\(d/¢) +d/c =€=d+d/¢. Sod = (s' + )™, andh € ®,(d, i) implies
h € . Summarizing, we have< h + d = h+d,h<c,andhel.

Now choosek € &,(d, p+i), wherep = d\h. The elementp is defined,
sinceh + d is defined andl\h+h+d =1. Sowe hav&k < d, p+i <d+Kk,
which impliesi < p/(d + k) = p/d + k, where the elemenp/d is defined as
p <d. Let p’ be such thatd + p’ = (p/d)~, then Lemma 3.2 (i) implies that
ke & (d+ p,i). Hencek € | andi < (d+ p')~ +k. But(d+ p')~ = p/d =
(d\h)/d = h, so thati < h + k. This proves that is Riesz. O

4. LATTICE ORDERED PSEUDOEFFECT ALGEBRAS

A pseudoeffect algebifais lattice ordered ifforakh, b € E, a Vv banda A b
areinE.

Theorem 4.1. Let E be a lattice ordered pseudoeffect algebra. The, b) =
{aAb/a} and @, (a, b) = {a\a A b}.
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Proof: Letd € V|(a, b) thend < aandb < d + &. It then follows thata\d +
d+4&a=1, henced + &= (a\d)™, and thereford < (a\d)™. This entails that
a\d + bexists,and\d + b < limpliesa\d < 1\b = b. Hence maximal possible
value ofa\d isa A b. Putdy = (a A b)/a, thendy <aand @A b)/a+ &= (an
b)/1 = (a Ab)~. Froma A b < bwe obtainb < (a A b)™, which entails thatl, +
a > b. This proves thad, € V| (a, b), anda\dy = a A b entails thatly is minimal.
Letd € Vi(a, b). Thend < aandb < a + d, and similarly as above, we de-
rive thatd/a < a A b. Putdy = a\(a A b). Thendy < aanda+ dy = a+ a\(a A
b) = 1\(aAb) = (aAb)~. Froma A b < b we obtain thab < (aAb)~ =a +
do. This proves thatly € V; (a, b), and sincedy/a = (a\(a A b)/a=a b, dy is
minimal. O

We denotep (a, b) := (a A b)/a, ¢ (a, b) := a\(a A b).

Corollary 4.2.  Anideal I in lattice ordered pseudoeffect algebra is Riesz if and
onlyifbe I implies¢(a,b) = (aAb)/ae | and¢,(a,b) =a\(anb) e I.

Lemma 4.3. In every pseudoeffect algebra E the following holds for arly a
E,witha<b:

(i) b\a=by/a,
(i) a/b=a\b

Proof: Clearly,a<b impliesEg ab<a.

(i) b\a+a=bimpliesb+b\a+a=a+ a = 1.Fromthis+ b\a = 3,
henceb\a = b/a. N B
(i) a+a/b+b=b+b=a+aentailsa/b+ b= 4a, hencea/b = a\b.
|

Lemma 4.4. In alattice ordered pseudoeffect algebra E the following holds for
any,abe E:

() (@avb)y-=anAb,
(i) (@avb)y"=&aAb.

Proof:

(i) From @v b)~ <a,b it follows that @v b)~ <aAb. Letd € E be
suchthat < a, b. Thena, b < d~, whence & v b) < d™, which entails
d < (av b)". This proves thatg v b)~ =a A b.

(i) We have @ v b)™ <a™, b™. Letd € E be such thatl <a™, b™. Then
a,b <d,henceavb <d andsda < (avb)”. This provesg v b)~ =
anb. O
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As a corollary, we obtaing Ab)~ =av b, (@A b)~ =&avb.

Corollary4.5. Anideal | in alattice ordered effect algebra E is Riesz if and only
if foranybe I, a € E, we have g(av b) € | and(a Vv b)\a € I. In addition, a
normal ideal | is Riesz if and only if one of the latter conditions holds.

Proof: According to Corollary 4.2| is a Riesz ideal if and only ifa{ A b)/a € |
anda\(a A b) € | wheneveb € |. Now we have, using Lemmas 4.3 and 4.4,
a\(ab) =a/(@anb)”

=a/(avbh).
Similarly,
(@rb)/a=(anb)™\a
= (avb)\a

Sincea is arbitrary, we obtain the desired statement.
If 1 is a normal ideal, then for arye E,a+ | = | + a. From

a+a/(avhb)y=(avb\a+a,
and normality ofl , we havea/(a v b) e | iff (aVv b)\a e I. O
According to Dvureénskij and Vetterlein (2001b), a lattice ordered effect
algebra is a pseudo MV-algebra iff
a\(anb)=(avh)\b (5)
equivalently, iff
(anb)/a=Db/(avb) (6)

From this we can derive the following noncommutative analogue ofthe
symmetry condition (Bennett and Foulis, 1995) for Sasaki projections in pseudo-
MV algebras.

Theorem 4.6. A lattice ordered effect algebra E is a pseudo MV-algebra if and
onlyifforanyg b € E, ¢ (a, b) = ¢ (b, @).

Proof: By (6)andLemmad4.4y(a, b) = (a A b)/a=b/(avb)=b\(EAb) =
¢r (b, @). Applying (5) tog, (a, b) we obtain the same relation. O

In what follows we need the following observations.
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Lemma4.7. Let E be a pseudoeffect algebra. Lebai € I, be elementsin E
such thatb=\/b; € E.

(i) Ifa + by exist for all i, then
\/(@+b)=a+b. (7)
i

Similarly, if b 4 a exists in E for all i, then

Vm+m:b+a (8)
(i) Ifc < b foralli, then
\/(Bi\c) = bc. &)
Similarly,
\/(e/h) =c/b. (10)

Proof:

(i) For alli,a+ b <a+ b. Assume thatm € E is such thata+ b <m
foralli. Thenb;, < a/mvi impliesb < a/m, and this yielda + b < m.
Hencea + b is the supremum od + by;.

(i) by > cvi impliesb > ¢, andb;\c < b\cVi. Assume thatn € E is such
thatb;\c < mvi, thenbj\c = (bj\c) A ¢ < m A c. This entailsy; < mA
C+ cvi, and sob < m A ¢ + ¢, which yieldsb\c < m. Thereforeb\c is
the supremum o \c. m|

Lemma 4.8. LetE be a lattice ordered pseudoeffect algebrah & E such that
at+b=b+aexistsandanb’'=0thenat+b=avb.

Proof: By DvureCenskij and Vetterlein (2001a)\(a Vv b) = (c\a) A (c\b)
wheneverc > a, b. Putc = a+ b, then @+ b)\(aVv b) = ((@a+ b)\a)) A (a+
b)\b) = (" + a)\a) A (a+b)\b) =b"Aa=0. O

An element e of a pseudoeffect algelfrds said to becentral (Dvuecenskij,
2003) if there exists an isomorphism

fo: E — [0, €] x [0, &] (11)

such thatfe(e) = (e, 0) and if fo(X) = (X1, X2), thenx = x; + x, for all x € E.
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Theorem 4.9. Let | be a normal Riesz ideal in a lattice ordered pseudoeffect
algebra E. If p:= \/{i:i € |} exists, then p is a central element in E.

Proof: Let p=\/1. First we prove the following propertiesic € E, (p v
O\c<p, p=pandpAp=0.

By Lemma 4.7 (ii), for everxc € E, (pvc)\c = \/{(avc)\c ae |}, and
sincel isRiesz, & v c)\c € I, hence p v ¢)\c < p. Similarly,c/(p v c) < pfor
allc e E.

Letae I,thenpArac | andforalbe |, pra+belhencepra+b=<
p.ByLemmad.7(jpra+p=\{(pra)+hbbel},hencepra+ p=<p.
This givesp A a = 0. Leta’ be such thap + a = @' + p, sincel is normal, we
havea’ € 1, so thatp A @ = 0. By Lemma 4.8, it follows thap+a= p Vv a.
Similarly we prove thaé + p = a v p. Therefore

l1=p+ p=\/{§+a:ae I}={pvaacl}=pvp
by Lemma 4.7, hence
(pvp) " =pAp=0.
Similarly,
l=p+p=\/{a+Ppacli={avpacl}=pvp
yields

From

(Lemma 4.4), we get
C<CAP+CAD.
Since this holds for every € E, we obtain
C<CApP+CAp (12)

forallc e E.
Similarly, from

c/(pve)=C\(PAC)=pAC
(Lemma 4.4), we get
C<CAp+CAD,
and since this holds for atl € E, we obtain

C<CAPpP+CADP (13)
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Puttingc = p, we get

P<PAP+PADP=PAD,
and puttingc = P, we get
P<PApP+PAP=DPAD
and summarizing, we haye = p.
From (12) we have, for al € E,
a/arp+arp)<anp/@arp+anp)=anp<p. (14)

Using Lemma 4.7, we have
arpt+arp<p+anp=\/letarpecl}

ande+aA p=anA p+€,wherebynormalityof,e€ e |.Hencean pAr€ =
0,and by Lemma4.8&+aA p=evaa p. This entails

p+arp=\/letanpeecl}=\/fevarpeel}=pvanp,
and then
a/lanpt+anp)=a/(pvarp)=a/(pva)=p. (15)
Fromp A p = 0 and from (14) and (15) it follows that
a/anp+anp)=0,
hence for evera € E,
a=anp+anp. (16)
Similarly we prove that
a=aAp+anp. 7
Define the mappingd, : E — [0, p] x [0, P] by
fo(X) = (XA P, XA D) (18)

Clearly, fp(p) = (p, 0) and fp(1) = (p, P). For any &, x2) with x¢ < p,
Xo < Pputx =X+ X, thenxy +Xo =XAP+XAP andxy < XA P, X2 <
X A P impliesx; = X A p, X2 = X A P. Moreover, from (17) and (16) and from
p=pandpA p=0,we getby Lemma 4.8, that= X3 vV X = X + X3.

It follows that if (X1, X2), (Y1, ¥2) € [0, p] x [0, p] are such thak; + x, =
Y1+ Yo, Orif X1 + X2 = y2 + Y1, then &, X2) = (Y1, ¥2).

From this we can derive thdi, is injective and surjective.

If x+y exists, thenx Ap+yAp andxA P+ yAp exist, therefore
fo(X) + fp(Y) = (XA P+YAPXAP+YADP,andXAP+XAP+YAP+
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YA P=Xx+Y,siceany ofx A p, Yy A p commutes with any ok A P, y A P. It
follows that f(x) + fp(y) = fp(X +y).

Conversely, if fp(x) + fp(y) exists, therx Ap+XAP+YAP+YAD
exists, and equals+ y. This proves thaf, and fp‘l are homomorphisms, which
concludes the proof. O
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