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A noncommutative version of generalized Sasaki projections in pseudoeffect algebras
is introduced. It is proved that an ideal in a pseudoeffect algebra is Riesz if and only if
it is closed under the right and left Sasaki projections. In lattice ordered pseudoeffect
algebras, it is shown that generalized Sasaki projections are one-element sets, and their
explicit form is found. It is shown that if a supremum of a normal Riesz ideal in a lattice
ordered pseudoeffect algebra exists, it is a central element. These results extend those
obtained recently by Avallone and Vitolo for effect algebras.
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1. INTRODUCTION

Effect algebras (alias difference posets) have been introduced for modelling
unsharp measurements in quantum mechanical systems (Foulis and Bennett, 1994).
They are a generlization of many structures which arose in quantum mechanics
(Beltrametti and Cassinelli, 1981; Pt´ak and Pulmannov´a, 1981; Varadarajan, 1985),
in particular of orthomodular lattices in noncommutative measure theory and MV-
algebras in fuzzy measure theory. After 1994, a great number of papers concerning
effect algebras have been published (see Dvureˇcenskij and Pulmannov´a, 2000, for
basic properties and bibliography).

At the end of 90s, a noncommutative version of MV-algebras (Chang, 1958),
called pseudo-MV-algebras appeared (Georgescu and Iorgulescu, 2001; Rachůnek,
2002). A generalization of these, a noncommutative version of effect algebras, so-
called pseudoeffect algebras, have been introduced and studied in Dvureˇcenskij
and Vetterlein (2001a,b,c) and Dvureˇcenskij (2003). Noncommutative algebraic
strcutures found applications in noncommutative logic (H´ajek, submitted) and a
programming language (Baudot, 2000).
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It has been proved in Dvureˇcenskij and Vetterlein (2001c) that the quotient
of an effect algebra with respect to a normal Riesz ideal is again a pseudoef-
fect algebra. In the present paper, we introduce a noncommutative version of
generalized Sasaki projections (Bennett and Foulis, 1998) in pseudoeffect alge-
bras and show their relations to Riesz ideals. The results extend those in Cheva-
lier and Pulmannov´a (2000) and Avallone and Vitolo (2003) obtained for effect
algebras.

2. PSEUDOEFFECT ALGEBRAS

A partial algebra (E;+, 0, 1), where+ is a partial binary operation and 0
and 1 are constants, is called apseudoeffect algebra, if, for all a, b, c ∈ E, the
following properties hold:

(i) a+ b and (a+ b)+ c exist iff b+ c anda+ (b+ c) exist, and in this
case (a+ b)+ c = a+ (b+ c),

(ii) there is exactly oned ∈ E and exactly onee∈ E such thata+ d =
e+ a = 1,

(iii) if a+ b exists, there are elementsd, e in E such thata+ b = d + a =
b+ e,

(iv) if 1 + a or a+ 1 exists, thena = 0.

Definea ≤ b iff there exists an elementc ∈ E such thata+ c = b. Then≤
is a partial ordering on E such that 0≤ a ≤ 1 for all a ∈ E. It can be shown
thata ≤ b iff b = a+ c = d + a for somec, d ∈ E. We will write c = a/b and
d = b\a. Then

(b\a)+ a = a+ (a/b) = b,

in particular, we denotēa = 1\a, ã = a/1, so thatā+ a = 1= a+ ã for all
a ∈ E.

Notice that ifa+ b is defined, anda1 ≤ a, b1 ≤ b, thena1+ b1 is also defined
in E. In what follows, we often writea+ b tacitly assuming thata+ b is defined.

For basic properties of pseudoeffect algebras see Dvureˇcenskij and Vetterlein
(2001a,b). We note that if+ is commutative, thenE becomes an effect algebra.

For example, if (G, u) is a po-group with a strong unitu (not necessarily
abelian), and

0(G, u) := {g ∈ G : 0≤ g ≤ u}
is the initial interval inG+, then (0(G, u);+, 0,u) is a pseudoeffect algebra if we
restrict the group addition+ to 0(G, u).

Let E, F be two pseudoeffect algebras. A mappingh : E→ F is said to be
a (homo)morphismif
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(i) h(0)= 0 andh(1)= 1 and
(ii) h(a+ b) = h(a)+ h(b) whenevera+ b is defined inE.

If h is injective and surjective, andh−1 is a homomorphism, thenh is said to be
an isomorphismandE andF are calledisomorphic.

A nonempty subsetI of a pseudoeffect algebraE is said to be anideal if

(i) x + y ∈ I wheneverx, y ∈ I andx + y is defined inE, and
(ii) if x ∈ I andy ≤ x, theny ∈ I .

Clearly,{0} andE are ideals inE. An ideal J is calledproper if J 6= E.
Let A be a nonempty subset ofE, a ∈ E. ThenA+ a: = {x + a: x ∈ A and

x + a is defined inE} anda+ A: = {a+ x: x ∈ A anda+ x is defined inE}.
An ideal in I ⊆ E is callednormal if a+ I = I + a for all a ∈ E. Clearly,

{0} andE are normal ideals. Moreover, iff is a homomorphism fromE to F , then

ker( f ): = {x ∈ E: f (x) = 0}
is a normal ideal ofE.

An ideal I of E is said to be aRiesz ideal(cf. Chevalier and Pulmannov´a,
2000; Dvureˇcenskij and Vetterlein, 2001c) if

x ∈ I , a, b, ∈ E, x ≤ a+ b ⇒ ∃a1, b1 ∈ I , x ≤ a1+ b1, a1 ≤ a, b1 ≤ b.

Let P be an ideal of a pseudoeffect algebraE. Fora, b ∈ E, we writea ∼I b
iff there are elementse, f ∈ I such thata\e= b\ f . We recall thata ∼I b iff
e′/a = b\ f for somee′, f ∈ I iff e′/a = f ′/b for somee′, f ′ ∈ I .

Theorem 2.1. (Dvurečenskij and Vetterlein, 2001c, Proposition 3.6). Let P be
a normal Riesz ideal of a pseudoeffect algebra E. Then∼p is an equivalence on E
such that (E/P;+, [0]P, [1]P) is a pseudoeffect algebra, where[a]P = {b ∈ E:
b ∼P a}, E/P = {[a]: a ∈ E}, and [a]P + [b]P = [c]P iff there are a1 ∈ [a]P,
b1 ∈ [b]P, and c1 ∈ [c]P such that a1+ b1 = c1.

3. GENERALIZED SASAKI PROJECTIONS

In analogy with Bennett and Foulis (1998), let us introduce the following
sets:

1l (a, b) := {d ∈ E : d ≤ a, b ≤ d + ã}, (1)

Φl (a, b) := {minimal elements in∇l (a, b)}; (2)

∇r (a, b) := {d ∈ E : d ≤ a, b ≤ ā+ d}, (3)

Φr (a, b) := {minimal elements in∇r (a, b)}. (4)
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The sets8l (a, b) (resp.8r (a, b)) will be called theleft (resp. theright) gen-
eralized Sasaki projection of b on a. Notice thata ∈ ∇l (a, b) anda ∈ ∇r (a, b),
but 8l (a, b) and 8r (a, b) may be empty in general (Bennett and Foulis,
1998).

We will say that a subsetJ of E is closedunder left or right generalized
Sasaki projections if

j ∈ J, a ∈ E ⇒ 8l (a, j ) ⊂ J,

or

j ∈ J, a ∈ E ⇒ 8r (a, j ) ⊂ J.

We will say thatJ is closed under generalized Sasaki projectionsif it is closed
under left and right genealized Sassaki projections.

Lemma 3.1. Let a, b ∈ E, if s ∈ E is such that̃a\s and b+ s are defined, then

(i) ∇l (a, b+ s) ⊂ 1l (s′ + a, b), whereã\s= (s′ + a)∼.
(ii) 8l (a, b+ s) ⊂ 8l (s′ + a, b).

Proof:

(i) Let d ∈ ∇l (a, b+ s), then by definition,d ≤ a andb+ s ≤ d + ã. The
latter inequality impliesb ≤ (d + ã)\s= d + (ã\s). This impliesd ≤
a ≤ s′ + a, andb ≤ d + (s′ + a)∼, that is,d ∈ ∇l (s′ + a, b).

(ii) Let d ∈ 8l (a, b+ s). It suffices to show thatd is minimal in∇l (s′ + a, b).
So choosee∈ E, e≤ d, ande∈ ∇l (s′ + a, b). Frome≤ d it follows that
e≤ a. Moreover,b ≤ e+ (s′ + a)∼ = e+ ã\s implies b+ s ≤ e+ ã.
Hencee∈ ∇(a, b+ s), and minimality ofd implies thate= d. This
concludes the proof. h

Lemma 3.2. Let a, b ∈ E, if s ∈ E is such that s+ b and s/ā are defined, then

(i) ∇r (a, s+ b) ⊂ ∇r (a+ s′, b), where s/ā = (a+ s′)−.
(ii) 8r (a, s+ b) ⊂ 8r (a+ s′, b).

Proof:

(i) Let d ∈ ∇r (a, s+ b), then by definition,d ≤ a ands+ b ≤ ā+ d. The
latter inequality implies b ≤ s/(ā+ d) = s/ā+ d = (a+ s′)− + d,
henced ∈ ∇r (a+ s′, b).

(ii) Let d ∈ Φr (a, s+ b), we have to prove thatd is minimal in ∇r (a+
s′, b). Let e≤ d, e∈ ∇r (a+ s′, b). This impliese≤ d ≤ a, and b ≤
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(a+ s′)− + e= (s/ā)+ e, from the last inequality we gets+ b ≤
ā+ e. Hencee∈ 8r (a, s+ b), and minimality ofd yieldse= d. This
concludes the proof. h

Now we are able to prove the main result in this section.

Theorem 3.3. Let E be a pseudoeffect algebra such that for every a, b ∈ E,
8l (a, b) 6= ∅ and8r (a, b) 6= ∅. An ideal I in E is a Riesz ideal if and only if I is
closed under generalized Sasaki projections.

Proof: First assume thatI is a Riesz idal. Leti ∈ I andm ∈ 8l (a, i ), that is,
m≤ a andi ≤ m+ ã. SinceI is Riesz, there arei1, i2 in I such thati ≤ i1+ i2

and i1 ≤ m, i2 ≤ ã. This implies i1 ≤ a, i ≤ i1+ ã hencei1 ∈ ∇l (a, i ). From
i1 ≤ m, and minimality ofm we getm= i1 ∈ I . This proves thatI is closed under
left generalized Sasaki projections. Now leti ∈ I , m ∈ 8r (a, i ). Thenm≤ a, i ≤
ā+m. It follows that there arei1, i2 ∈ I such thati1 ≤ ā, i2 ≤ m andi ≤ i1+ i2.
This entailsi2 ≤ m≤ a andi ≤ ā+ i2 that is,i2 ∈ ∇r (a, i ). Sincem is minimal
andi2 ≤ m we getm= i2 ∈ I . This proves thatI is closed under right generalized
Sasaki projections.

To prove the converse, assume thatI is an ideal closed under generalized
Sasaki projections. Leti ∈ I andc, d ∈ E be such thati ≤ c+ d. Puts := d/c̃,
the equalityc+ d + s= c+ d + d/c̃ = 1 implies thats is defined andi + s
is defined. Chooseh ∈ 8l (c, i + s). Then h ≤ c and by Lemma 3.1 (ii),h ∈
8l (s′ + c, i ), where (s′ + c)∼ = c̃\s= c̃\(d/c̃) = d. The last equality follows
from c̃\(d/c̃)+ d/c̃ = c̃ = d + d/c̃. Sod = (s′ + c)∼, andh ∈ 8l (d̄, i ) implies
h ∈ I . Summarizing, we havei ≤ h+ 'd = h+ d, h ≤ c, andh ∈ I .

Now choosek ∈ 8r (d, p+ i ), where p = d̄\h. The elementp is defined,
sinceh+ d is defined and̄d\h+ h+ d = 1. So we havek ≤ d, p+ i ≤ d̄ + k,
which implies i ≤ p/(d̄ + k) = p/d̄ + k, where the elementp/d̄ is defined as
p ≤ d̄. Let p′ be such thatd + p′ = (p/d̄)−, then Lemma 3.2 (ii) implies that
k ∈ 8r (d + p′, i ). Hencek ∈ I andi ≤ (d + p′)− + k. But (d + p′)− = p/d̄ =
(d̄\h)/d̄ = h, so thati ≤ h+ k. This proves thatI is Riesz. h

4. LATTICE ORDERED PSEUDOEFFECT ALGEBRAS

A pseudoeffect algebraE is lattice ordered if for alla, b ∈ E, a ∨ banda ∧ b
are inE.

Theorem 4.1. Let E be a lattice ordered pseudoeffect algebra. The8l (a, b) =
{a ∧ b̄/a} and8r (a, b) = {a\a ∧ b̃}.
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Proof: Let d ∈ ∇l (a, b) thend ≤ a andb ≤ d + ã. It then follows thata\d +
d + ã = 1, henced + ã = (a\d)∼, and thereforeb ≤ (a\d)∼. This entails that
a\d + bexists, anda\d + b ≤ 1 impliesa\d ≤ 1\b = b̄. Hence maximal possible
value ofa\d is a ∧ b̄. Putd0 = (a ∧ b̄)/a, thend0 ≤ a and (a ∧ b̄)/a+ ã = (a ∧
b̄)/1= (a ∧ b̄)∼. Froma ∧ b̄ ≤ b̄ we obtainb ≤ (a ∧ b̄)∼, which entails thatd0+
ã ≥ b. This proves thatd0 ∈ ∇l (a, b), anda\d0 = a ∧ b̄ entails thatd0 is minimal.

Let d ∈ ∇r (a, b). Thend ≤ a andb ≤ ā+ d, and similarly as above, we de-
rive thatd/a ≤ a ∧ b̃. Putd0 = a\(a ∧ b̃). Thend0 ≤ a andā+ d0 = ā+ a\(a ∧
b̃) = 1\(a ∧ b̃) = (a ∧ b̃)−. Froma ∧ b̃ ≤ b̃ we obtain thatb ≤ (a ∧ b̃)− = ā+
d0. This proves thatd0 ∈ ∇r (a, b), and sinced0/a = (a\(a ∧ b̃)/a = a ∧ b̃, d0 is
minimal. h

We denoteφl (a, b) := (a ∧ b̄)/a, φr (a, b) := a\(a ∧ b̃).

Corollary 4.2. An ideal I in lattice ordered pseudoeffect algebra is Riesz if and
only if b∈ I impliesφl (a, b) = (a ∧ b̄)/a ∈ I andφr (a, b) = a\(a ∧ b̃) ∈ I .

Lemma 4.3. In every pseudoeffect algebra E the following holds for any a, b ∈
E, with a≤ b:

(i) b\a = b̄/ā,
(ii) a/b = ã\b̃

Proof: Clearly,a ≤ b impliesb̄ ≤ ā, b̃ ≤ ã.

(i) b\a+ a = b impliesb̄+ b\a+ a = ā+ a = 1. From this̄b+ b\a = ā,
henceb\a = b̄/ā.

(ii) a+ a/b+ b̃ = b+ b̃ = a+ ā entailsa/b+ b̃ = ã, hencea/b = ã\b̃.
h

Lemma 4.4. In a lattice ordered pseudoeffect algebra E the following holds for
any, a, b ∈ E:

(i) (a ∨ b)− = ā ∧ b̄,
(ii) (a ∨ b)∼ = ã ∧ b̃.

Proof:

(i) From (a ∨ b)− ≤ ā, b̄ it follows that (a ∨ b)− ≤ ā ∧ b̄. Let d ∈ E be
such thatd ≤ ā, b̄. Thena, b ≤ d∼, whence (a ∨ b) ≤ d∼, which entails
d ≤ (a ∨ b)−. This proves that (a ∨ b)− = ā ∧ b̄.

(ii) We have (a ∨ b)∼ ≤ a∼, b∼. Let d ∈ E be such thatd ≤ a∼, b∼. Then
a, b ≤ d̄, hencea ∨ b ≤ d̄, and sod ≤ (a ∨ b)∼. This proves (a ∨ b)∼ =
ã ∧ b̃. h
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As a corollary, we obtain (a ∧ b)− = ā ∨ b̄, (a ∧ b)∼ = ã ∨ b̃.

Corollary 4.5. An ideal I in a lattice ordered effect algebra E is Riesz if and only
if for any b∈ I , a ∈ E, we have a/(a ∨ b) ∈ I and (a ∨ b)\a ∈ I . In addition, a
normal ideal I is Riesz if and only if one of the latter conditions holds.

Proof: According to Corollary 4.2,I is a Riesz ideal if and only if (a ∧ b̄)/a ∈ I
anda\(a ∧ b̄) ∈ I wheneverb ∈ I . Now we have, using Lemmas 4.3 and 4.4,

a\(a ∧ b̄) = ā/(a ∧ b̄)−

= ā/(ā ∨ b).

Similarly,

(a ∧ b̄)/a = (a ∧ b̄)∼\ã
= (ã ∨ b)\ã.

Sincea is arbitrary, we obtain the desired statement.
If I is a normal ideal, then for anya ∈ E, a+ I = I + a. From

a+ a/(a ∨ b) = (a ∨ b)\a+ a,

and normality ofI , we havea/(a ∨ b) ∈ I iff ( a ∨ b)\a ∈ I . h

According to Dvureˇcenskij and Vetterlein (2001b), a lattice ordered effect
algebra is a pseudo MV-algebra iff

a\(a ∧ b) = (a ∨ b)\b (5)

equivalently, iff

(a ∧ b)/a = b/(a ∨ b) (6)

From this we can derive the following noncommutative analogue of theφ-
symmetry condition (Bennett and Foulis, 1995) for Sasaki projections in pseudo-
MV algebras.

Theorem 4.6. A lattice ordered effect algebra E is a pseudo MV-algebra if and
only if for any a, b ∈ E,φl (a, b) = φr (b, a).

Proof: By (6) and Lemma 4.4,φl (a, b) = (a ∧ b̄)/a = b̄/(a ∨ b̄) = b\(ã ∧ b) =
φr (b, a). Applying (5) toφr (a, b) we obtain the same relation. h

In what follows we need the following observations.
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Lemma 4.7. Let E be a pseudoeffect algebra. Let a; bi , i ∈ I , be elements in E
such that b:=∨ bi ∈ E.

(i) If a + bi exist for all i , then∨
i

(a+ bi ) = a+ b. (7)

Similarly, if bi + a exists in E for all i , then∨
i

(bi + a) = b+ a. (8)

(ii) If c ≤ bi for all i , then ∨
i

(bi \c) = b\c. (9)

Similarly, ∨
i

(c/bi ) = c/b. (10)

Proof:

(i) For all i , a+ bi ≤ a+ b. Assume thatm ∈ E is such thata+ bi ≤ m
for all i . Thenbi ≤ a/m∀i impliesb ≤ a/m, and this yieldsa+ b ≤ m.
Hencea+ b is the supremum ofa+ bi .

(ii) bi ≥ c∀i implies b ≥ c, andbi \c ≤ b\c∀i . Assume thatm ∈ E is such
thatbi \c ≤ m∀i , thenbi \c = (bi \c) ∧ c̄ ≤ m∧ c̄. This entailsbi ≤ m∧
c̄+ c∀i , and sob ≤ m∧ c̄+ c, which yieldsb\c ≤ m. Thereforeb\c is
the supremum ofbi \c. h

Lemma 4.8. Let E be a lattice ordered pseudoeffect algebra, a, b ∈ E such that
a+ b = b′ + a exists and a∧ b′ = 0 then a+ b = a ∨ b.

Proof: By Dvurečenskij and Vetterlein (2001a),c\(a ∨ b) = (c\a) ∧ (c\b)
wheneverc ≥ a, b. Putc = a+ b, then (a+ b)\(a ∨ b) = ((a+ b)\a)) ∧ ((a+
b)\b) = ((b′ + a)\a) ∧ ((a+ b)\b) = b′ ∧ a = 0. h

An element e of a pseudoeffect algebraE is said to becentral(Dvuečenskij,
2003) if there exists an isomorphism

fe : E→ [0, e] × [0, ẽ] (11)

such thatfe(e) = (e, 0) and if fe(x) = (x1, x2), thenx = x1+ x2 for all x ∈ E.
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Theorem 4.9. Let I be a normal Riesz ideal in a lattice ordered pseudoeffect
algebra E. If p:=∨{i : i ∈ I } exists, then p is a central element in E.

Proof: Let p =∨ I . First we prove the following properties:∀c ∈ E, (p∨
c)\c ≤ p, p̄ = p̃ and p∧ p̄ = 0.

By Lemma 4.7 (ii), for everyc ∈ E, (p∨ c)\c =∨{(a ∨ c)\c: a ∈ I }, and
sinceI is Riesz, (a ∨ c)\c ∈ I , hence (p∨ c)\c ≤ p. Similarly,c/(p∨ c) ≤ p for
all c ∈ E.

Leta ∈ I , thenp̄∧ a ∈ I and for allb ∈ I , p̄∧ a+ b ∈ I hencēp∧ a+ b ≤
p. By Lemma 4.7 (i)p̄∧ a+ p =∨{( p̄∧ a)+ b: b ∈ I }, hencep̄∧ a+ p ≤ p.
This givesp̄∧ a = 0. Leta′ be such that̄p+ a = a′ + p̄, sinceI is normal, we
havea′ ∈ I , so that p̄∧ a′ = 0. By Lemma 4.8, it follows that̄p+ a = p̄∨ a.
Similarly we prove thata+ p̃ = a ∨ p̃. Therefore

1= p̄+ p =
∨
{ p̄+ a: a ∈ I } = { p̄∨ a: a ∈ I } = p̄∨ p

by Lemma 4.7, hence

( p̄∨ p)∼ = p∧ p̃ = 0.

Similarly,

1= p+ p̃ =
∨
{a+ p̃: a ∈ I } = {a ∨ p̃: a ∈ I } = p∨ p̃

yields

(p∨ p̃)− = p̄∧ p = 0.

From

(p∨ c)\c = p̄∧ c̄/c̄ ≤ p∧ c̄

(Lemma 4.4), we get

c̄ ≤ c̄∧ p̄+ c̄∧ p.

Since this holds for everyc ∈ E, we obtain

c ≤ c∧ p̄+ c∧ p (12)

for all c ∈ E.
Similarly, from

c/(p∨ c) = c̃\( p̃∧ c̃) ≤ p∧ c̃

(Lemma 4.4), we get

c̃ ≤ c̃∧ p+ c̃∧ p̃,

and since this holds for allc ∈ E, we obtain

c ≤ c∧ p+ c∧ p̃ (13)
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Puttingc = p̄, we get

p̄ ≤ p̄∧ p+ p̄∧ p̃ = p̄∧ p̃,

and puttingc = p̃, we get

p̃ ≤ p̃∧ p̄+ p̃∧ p = p̃∧ p̄,

and summarizing, we havēp = p̃.
From (12) we have, for alla ∈ E,

a/(a ∧ p+ a ∧ p̃) ≤ a ∧ p/(a ∧ p+ a ∧ p̃) = a ∧ p̃ ≤ p̃. (14)

Using Lemma 4.7, we have

a ∧ p+ a ∧ p̃ ≤ p+ a ∧ p̃ =
∨
{e+ a ∧ p̃: e∈ I },

ande+ a ∧ p̃ = a ∧ p̃+ e′, where by normality ofI , e′ ∈ I . Hencea ∧ p̃∧ e′ =
0, and by Lemma 4.8,e+ a ∧ p̃ = e∨ a ∧ p̃. This entails

p+ a ∧ p̃ =
∨
{e+ a ∧ p̃: e∈ I } =

∨
{e∨ a ∧ p̃: e∈ I } = p∨ a ∧ p̃,

and then

a/(a ∧ p+ a ∧ p̃) ≤ a/(p∨ a ∧ p̃) ≤ a/(p∨ a) ≤ p. (15)

From p∧ p̃ = 0 and from (14) and (15) it follows that

a/(a ∧ p+ a ∧ p̃) = 0,

hence for everya ∈ E,

a = a ∧ p+ a ∧ p̃. (16)

Similarly we prove that

a = a ∧ p̄+ a ∧ p. (17)

Define the mappingf p : E→ [0, p] × [0, p̃] by

f p(x) = (x ∧ p, x ∧ p̃) (18)

Clearly, f p(p) = (p, 0) and f p(1)= (p, p̃). For any (x1, x2) with x1 ≤ p,
x2 ≤ p̃ put x = x1+ x2, then x1+ x2 = x ∧ p+ x ∧ p̃, and x1 ≤ x ∧ p, x2 ≤
x ∧ p̃ implies x1 = x ∧ p, x2 = x ∧ p̃. Moreover, from (17) and (16) and from
p̃ = p̄ and p∧ p̄ = 0, we get by Lemma 4.8, thatx = x1 ∨ x2 = x2+ x1.

It follows that if (x1, x2), (y1, y2) ∈ [0, p] × [0, p̃] are such thatx1+ x2 =
y1+ y2, or if x1+ x2 = y2+ y1, then (x1, x2) = (y1, y2).

From this we can derive thatf p is injective and surjective.
If x + y exists, thenx ∧ p+ y ∧ p and x ∧ p̃+ y ∧ p̃ exist, therefore

f p(x)+ f p(y) = (x ∧ p+ y ∧ p, x ∧ p̃+ y ∧ p̃), andx ∧ p+ x ∧ p̃+ y ∧ p+
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y ∧ p̃ = x + y, sice any ofx ∧ p, y ∧ p commutes with any ofx ∧ p̃, y ∧ p̃. It
follows that f p(x)+ f p(y) = f p(x + y).

Conversely, if f p(x)+ f p(y) exists, thenx ∧ p+ x ∧ p̃+ y ∧ p+ y ∧ p̃
exists, and equalsx + y. This proves thatf p and f −1

p are homomorphisms, which
concludes the proof. h
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